1. (26 pts) For the sample

32 41 36 32 37 32 35 38 25 42 35

do the following

- (a) (6 pts) Find the mean.
- (b) (6 pts) Find the standard deviation.
- (c) (6 pts) Find the 5-number summary of the data.
- (d) (8 pts) Draw a modified boxplot of the data.
- 2. (6 pts) Using the sample in problem 1, find the 85th percentile. You may use the formula $r = 1 + \frac{p}{100}(n-1)$.
- 3. (9 pts) Find the following areas under the standard normal curve.
 - (a) The area to the left of -1.65.
 - (b) The area between -1.65 and 1.85.
 - (c) The area to the right of 1.85.
- 4. (4 pts) Find the 85th percentile of the standard normal distribution.
- 5. (12 pts) Let the distribution of the random variable X be N(30,5). Find the following.
 - (a) The likelihood that X < 25.
 - (b) The likelihood that 22 < X < 32.
 - (c) The likelihood that X > 44.
 - (d) The 45^{th} percentile of X.
- 6. (9 pts) Suppose that waiting times, in minutes, at a toll booth are uniform on the interval from 0 to 6. Then the average of two randomly selected waiting times has the following distribution.

- (a) (3 pts) What is the height of the graph at the peak?
- (b) (6 pts) What is the probability that a randomly selected average is less than 1 minute?
- 7. (10 pts) Let the random variable X represent the time required to perform a specified task. Consider the following two hypotheses whose drawings are shown below:

 H_0 : X is uniform between 0 and 5.

 H_1 : X is uniform between 2 and 7.

A choice between the two hypotheses will be made based on a single value of X. The decision rule is to reject H_0 if the observed value of X is at least 4.

- (a) (5 pts) What is the value of α ?
- (b) (5 pts) What is the value of β ?

- 8. (12 pts) Suppose that in a population of commuters, 1/3 of them commute to work by public transportation and 2/3 of them commute to work by private vehicle. Using a sample size of n = 2, let \hat{p} be the sample proportion of workers who commute by public transportation.
 - (a) (3 pts) What are the possible values of \hat{p} .
 - (b) (6 pts) Find the sampling distribution of \hat{p} . That is, find the likelihood of each value of \hat{p} . You may want to draw a tree diagram to help you.
 - (c) (3 pts) What are the mean and standard deviation of the distribution that you found in part (a)?

- 9. (12 pts) Suppose that a random variable X represents waiting times that have a uniform distribution U(0,5). Then it turns out that $\mu=2.5$ and $\sigma=1.443$. Now let the random variable \overline{X} represent the average of 100 randomly selected values of X.
 - (a) (4 pts) Describe precisely the sampling distribution of \overline{X} .
 - (b) (8 pts) Find the probability that a randomly selected sample of 100 values of X will have an average that is between 2.25 and 2.75.